O telescópio IceCube, instalado no Polo Sul e em operação desde 2010, detectou a fonte de neurotrinos de alta energia (ICECUBE/NSF)
Edison Veiga
De Milão para a BBC News Brasil
Uma nova era de pesquisas especiais se inaugura nesta quinta-feira. Isso porque uma equipe internacional de astrônomos descobriu a fonte de neutrinos de alta energia encontrados no Polo Sul - e esta partícula misteriosa abre uma oportunidade para contar a história e esclarecer enigmas do próprio Universo.
A descoberta está na edição desta quinta da revista Science e foi divulgada em coletiva de imprensa na sede da National Science Foundation, em Alexandria, Virginia (EUA).
"Neutrinos de alta energia realmente nos fornecem uma nova janela para observar o Universo", comenta o físico Darren Grant, da Universidade de Alberta, em entrevista à BBC News Brasil.
Grant é um dos mais de 300 pesquisadores de 49 instituições que integram o grupo IceCube Collaboration - responsável pela descoberta. "As propriedades dos neutrinos fazem deles um mensageiro astrofísico quase ideal. Como eles viajam de seu ponto de produção praticamente desimpedidos, quando são detectados, podemos analisar que eles transportaram informações de sua origem."
Os neutrinos são partículas subatômicas elementares, ou seja, não há qualquer indício de que possam ser divididas em partes menores. São emitidos por explosões estelares e se deslocam praticamente à velocidade da luz.
Instalado no Polo Sul e em operação desde 2010, o IceCube é considerado o maior telescópio do mundo - mede um quilômetro cúbico. Levou dez anos para ser construído e fica sob o gelo antártico.
O IceCube consiste em um conjunto de mais de 5 mil detectores de luz, dispostos em uma grade e enterrados no gelo. É um macete científico. Quando os neutrinos interagem com o gelo, produzem partículas que geram uma luz azul - e, então, o aparelho consegue detectá-los. Ao mesmo tempo, o gelo tem a propriedade de funcionar como uma espécie de rede, isolando os neutrinos, facilitando sua observação.
Partícula é segredo do Universo
Desde a concepção do projeto, os cientistas tinham a intenção de monitorar tais partículas justamente para descobrir sua origem. A ideia é que isso dê pistas sobre a origem do próprio Universo. E é justamente isso que eles acabam de conseguir.
Os pesquisadores já sabem que a origem de neutrinos observados na Antártica são um blazar, ou seja, um corpo celeste altamente energético associado a um buraco negro no centro de uma galáxia. Este corpo celeste está localizado a 3,7 bilhões de anos-luz da Terra, na Constelação de Órion.
"Eis a descoberta-chave", explica Grant. "Trata-se das primeiras observações multimídia de neutrinos de alta energia coincidentes com uma fonte astrofísica, no caso, um blazar. Esta é a primeira evidência de uma fonte de neutrinos de alta energia. E fornece também a primeira evidência convincente de uma fonte identificada de raios cósmicos."
Emissão das partículas subatômicas elementares encontradas no Polo Sul vem de um corpo celeste localizado a 3,7 bilhões de anos-luz da Terra, na Constelação de Órion (DESY/SCIENCE COMMUNICATION LAB)
Conforme afirma o físico, a novidade é a introdução, no campo da astronomia, de uma nova habilidade para "ver" o universo. "Este é o primeiro passo real para sermos capazes de utilizar os neutrinos como uma ferramenta para visualizar os processos astrofísicos mais extremos do universo", completa Grant.
"À medida que esse campo de pesquisa continua se desenvolvendo, também deveremos aprender sobre os mecanismos que impulsionam essa partículas. E, um dia, começaremos a estudar essa partícula fundamental da natureza em algumas das energias mais extremas imagináveis, muito além daquilo que podemos produzir na Terra."
"Esta identificação lança um novo campo da astronomia de neutrinos de alta energia, e esperamos que traga avanços emocionantes em nossa compreensão do Universo e da física, incluindo como e onde essas partículas de energia ultra-alta são produzidas", afirma o astrofísico Doug Cowen, da Universidade Penn State. "Por 20 anos, um dos nossos sonhos era identificar as fontes de neutrinos cósmicos de alta energia. Parece que finalmente conseguimos."
Mapeando o desconhecido
Foram décadas em que astrônomos de todo o mundo procuraram detectar os chamados neutrinos cósmicos de alta energia, em tentativas frustradas de compreender onde e como essas partículas subatômicas são geradas com energias de milhares a milhões de vezes maiores do que as alcançadas no planeta Terra.
O IceCube conseguiu detectar pela primeira vez neutrinos do tipo em 2013. A partir de então, alertas eram disparados para a comunidade científica a cada nova descoberta. A partícula-chave, entretanto, só veio em 22 de setembro de 2017: o neutrino batizado de IceCube-170922A, com a impressionante energia de 300 trilhões de elétron-volts demonstrou aos cientistas uma trajetória.
"Apontando para um pequeno pedaço do céu na constelação de Órion", relata a astrofísica Azadeh Keivani, da Universidade Penn State, coautora do artigo publicado pela Science. Tão logo a partícula foi identificada, de forma coordenada e automatizada, quatorze outros observatórios do mundo passaram a unir esforços para identificar sua origem, com telescópios de espectroscopia nuclear e observações de raio-X e ultravioleta.
Quando os neutrinos interagem com o gelo, produzem partículas que geram uma luz azul, segundo os astrônomos (UNIVERSIDADE PENN STATE/AMON/NATE FOLLMER)
Todos os dados gerados foram analisados pelo grupo internacional de cientistas até a conclusão de que a fonte era o buraco negro supermassivo a 3,7 bilhões de anos-luz da Terra.
Essa distância do planeta significa que as informações carregadas pelo neutrino são de 3,7 bilhões de anos atrás, supondo que o mesmo tenha viajado à velocidade da luz. Nesse ponto, compreender tais propriedades é como olhar para os confins do passado do Universo - atualmente, acredita-se que o Big Bang tenha ocorrido há 13,8 bilhões de anos.
Após concluir a origem do neutrino IceCube-170922A, os cientistas vasculharam os dados arquivados pelo detector de neutrinos e concluíram que outros 12 neutrinos identificados entre 2014 e 2015 também eram oriundos do mesmo blazar. Ou seja: há a possibilidade de comparar partículas com a mesma origem, aumentando assim a consistência da amostra.
Telescópios de espectroscopia nuclear e observações de raio-X e ultravioleta foram usados para identificar a origem da partícula (UNIVERSIDADE PENN STATE/AMON/NATE FOLLMER)
De acordo com os cientistas do IceCube, essa detecção inaugura de forma incontestável a chamada "astronomia multimídia", que combina a astronomia tradicional - em que os dados dependem da ação da luz - com novas ferramentas, como a análise dos neutrinos ou das ondas gravitacionais.
"É um campo novo, empolgante e veloz. Que proporciona aos pesquisadores novos insights sobre a maneira como o Universo funciona", analisa o astrofísico Phil Evans, da Universidade de Leicester.
FONTE: BBC BRASIL
Comentários
Postar um comentário