Linhas de fluxo que mostram os campos magnéticos sobrepostos a uma imagem a cores do anel de poeira que rodeia o buraco negro supermassivo da Via Láctea. A estrutura azul em forma de Y é material quente que cai em direção ao buraco negro, localizado próximo do ponto onde os dois braços da figura em forma de Y se intersetam. As linhas revelam que o campo magnético segue a forma da estrutura empoeirada. Cada dos braços azuis tem o seu próprio campo que é totalmente distinto do resto do anel, visto em rosa.
Crédito: poeira e campos magnéticos - NASA/SOFIA; imagem do campo estelar - NASA/Telescópio Espacial Hubble
Existem buracos negros supermassivos no centro da maioria das galáxias, e a nossa Via Láctea não é exceção. Mas muitas outras galáxias têm buracos negros altamente ativos, o que significa que está a cair neles muito material, emitindo radiação altamente energética neste processo de "alimentação". O buraco negro central da Via Láctea, por outro lado, está relativamente calmo. Novas observações do SOFIA (Stratospheric Observatory for Infrared Astronomy) da NASA estão a ajudar os cientistas a compreender as diferenças entre buracos negros ativos e silenciosos.
Estes resultados fornecem informações sem precedentes sobre o forte campo magnético no centro da Via Láctea. Os cientistas usaram o mais novo instrumento do SOFIA, o HAWC+, para realizar estas medições.
Os campos magnéticos são forças invisíveis que influenciam os percursos de partículas carregadas e têm efeitos significativos sobre os movimentos e a evolução da matéria em todo o Universo. Mas os campos magnéticos não podem ser visualizados diretamente, portanto o seu papel não é bem compreendido. O instrumento HAWC+ deteta luz infravermelha distante e polarizada, invisível aos olhos humanos, emitida por grãos de poeira. Estes grãos alinham-se perpendicularmente aos campos magnéticos. A partir dos resultados do SOFIA, os astrônomos podem mapear a forma e inferir a força do campo magnético, de outra forma invisível, ajudando a visualizar esta força fundamental da natureza.
"Este é um dos primeiros exemplos em que podemos realmente ver como os campos magnéticos e a matéria interestelar interagem uns com os outros," observou Joan Schmelz, astrofísica do Centro de Pesquisas Espaciais Universitárias do Centro Ames da NASA em Silicon Valley, Califórnia, EUA, coautora do artigo que descreve as observações. "O HAWC+ muda o jogo."
Observações anteriores do SOFIA tinham mostrado o anel inclinado de gás e poeira em órbita do buraco negro da Via Láctea, de nome Sagitário A* (Sgr A*). Mas os novos dados do HAWC+ fornecem uma visão única do campo magnético nesta área, que parece traçar a história da região ao longo dos últimos 100.000 anos.
Os detalhes destas observações do campo magnético, pelo SOFIA, foram apresentados na reunião de junho de 2019 da Sociedade Astronômica Americana e serão submetidos à revista The Astrophysical Journal.
A gravidade do buraco negro domina a dinâmica do centro da Via Láctea, mas o papel do campo magnético tem sido um mistério. As novas observações com o HAWC+ revelam que o campo magnético é forte o suficiente para restringir os movimentos turbulentos do gás. Se o campo magnético canalizar o gás para que entre no próprio buraco negro, o buraco negro torna-se ativo porque consome muito gás. No entanto, se o campo magnético canalizar o gás para que entre em órbita em redor do buraco negro, então o buraco negro ficará quieto porque não está a ingerir nenhum gás que, de outra forma, acabaria por formar novas estrelas.
Os investigadores combinaram imagens no infravermelho médio e longínquo das câmaras do SOFIA com novas linhas de fluxo que visualizam a direção do campo magnético. A estrutura azul em forma de Y (ver figura) é material quente que cai em direção ao buraco negro, localizado próximo do ponto onde os dois braços da figura em forma de Y se intersetam. Colocando a estrutura do campo magnético sobre a imagem revela que o campo magnético segue a forma da estrutura empoeirada. Cada dos braços azuis tem o seu próprio componente de campo que é totalmente distinto do resto do anel, visto em rosa. Mas também existem lugares onde o campo se distancia das principais estruturas de poeira, como nas extremidades superior e inferior do anel.
"A forma espiral do campo magnético canaliza o gás para uma órbita em torno do buraco negro," comentou Darren Dowll, cientista do JPL da NASA e investigador principal do instrumento HAWC+, autor principal do estudo. "Isto pode explicar porque é que o nosso buraco negro está calmo enquanto outros estão ativos."
As novas observações do SOFIA com o HAWC+ ajudam a determinar como o material no ambiente extremo de um buraco negro supermassivo interage com ele, abordando uma antiga questão de porque é que o buraco negro central da Via Láctea é relativamente ténue, enquanto os de outras galáxias são tão brilhantes.
FONTE: ASTRONOMIA ONLINE
Comentários
Postar um comentário